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Theoretical values of (Pg/P:~)~ for K =  1, 3 and 5 are 
1.00, 0.76 and 0.41. The average experimental values of 
(P~/P~,),~p for K =  1 and 3 are 1-03 (for i>0.75 mA) 
and 0.61 (for 1 >0.25 mA). 

For K = 5  the comparison of the calculated value 
with the average experimental one is not possible, be- 
cause the experimental value of (P~/P~)~p depends on 
the high-frequency exciting current i, which de- 
pendence was not observed for K =  1 and 3. Thus in 
the case of K =  5 it is only possible to compare indi- 
vidual experimental quantities at low values of i. The 
increase of the ratio (P~/P~,)~p (for K =  5) versus i is 
shown in Fig. 6. The increase is brought about by rela- 
tively high acceleration of the moving planes, in which 
case the assumption that each of n(t) 'crystalline 
layers' diffracts totally is no longer justified. It is seen 
from Fig. 6 that for i ranging from 0 to 2 mA the 
change of (P[/P~,)~,p is _ 20 %. The authors realize that 
the theory presented in this paper is applicable only to 
qualitative estimation of neutron diffraction by vi- 
brating single crystals and to explanation of some 
phenomena observed. 

Similarly, in case of K =  3 and K =  5 it is possible to 
introduce a factor y;, analogous to the extinction factor 
Yext (Zachariasen, 1967) and to express the integrated 
intensity P~ in the form 

where 

P~=e~,~,y~ (19) 

sin KcoTz tg 0 B . . . . .  
, 2lv.,I 

Yk - (20) 
Ko9 T~ tg OB 

21V.~l 

On the basis of our experimental data and from our 
approximate theory we can make the following state- 
ment: For A(Iz)= 1, the integrated intensity difference 
between Bragg and Laue diffraction disappears when 
the displacement of the diffracting planes is accelerated 
in the direction of the reciprocal-lattice vector. 

The authors wish to thank Miss B. Ha~kov~i, Mr J. 
V~ivra and Mr P. Zeman for their valuable help 
throughout the measurements. 
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An algorithm is given for the rapid computation of the cosine invariants, cos (~O--HI"I-~H2"JI'~H1-H2), 
and the results are compared with the actual values for three structures. A weighting scheme is derived 
which enables this information to be incorporated directly into the multisolution tangent method of 
phase determination. Details are given of the determination of four unknown structures by this method. 

Introduction 

Three different direct methods have been proposed for 
solving crystal structures. 

(1) Methods based on the zero value of the mean 
~in¢ inv~ri~nt ~r~ all deriv¢d from u~¢ of the ~ 

formula (Karle & Hauptman, 1953) and the tangent 
formula (Karle & Hauptman, 1958): 

A/_/I,//2 sin (~0H2 + tpHl_n2) 
H2 

tg ~,.~= ~ A.~,,,2 cos (~.~+q,,,~_.~, 

/ 
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where 
0" 3 

A.I,.~= 2 ~ IE.~E.,E.~-.~I 

is the weight associated with the relation 

sin (~_,1 + ~-2 + ~°m--2) = 0. 

The simplicity of the use of these two formulae ex- 
plains why they remain so popular. The multisolution 
method (Germain, Main & Woolfson, 1970) permits a 
nearly complete automation of the process of struc- 
ture determination (Declerq, Germain, Main & 
Woolfson, 1973) as is shown by the numerous successes 
of MULTAN. 
• (2) Methods based on the cosine invariant computa- 

tion (Hauptman, Fisher, Hancock & Norton, 1969; 
Messager & Tsoucaris, 1972) aim at using the exact 
value of the invariant phase rather than equating it 
implicitly to zero as is done in the first methods. They 
also have the great advantage of using all the structure 
factors in the phase generation, and not only the 
largest. However, such a computation, even with the 
use of the approximate triple product formula (Haupt- 
man et aL, 1969) is very time-consuming and cannot be 
achieved on small computers. Thus, its use has been 
limited to the determination of a small number of 
phases (up to one hundred) which are afterwards used 
in the normal tangent formula refinement. This ex- 
plains the difficulties of a complete automation of this 
process of structure determination and few structures 
have been elucidated in this way. 

(3) Methods based on the Karle-Hauptman deter- 
minant (Tsoucaris, 1970) are undoubtedly the most 
accurate for phase determination. However they need 
longer computing times than the two preceding 
methods. Moreover it seems difficult to reconcile them 
with the multisolution as well as the cosine invariant 
computation. 

It would be interesting to combine the accuracy of 
the cosine invariant computation with the simplicity 

Cos;ne 
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0.0 
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Fig. 1. Variation of xt as a function off(see text). 

which characterizes the multisolution method. For 
that, we must be able to use information provided by 
the cosine invariant computation during the whole 
process of phase determination and not merely use it 
to generate starting phases. As it seems difficult to use 
the least-squares refinement proposed by Hauptman et 
al. (1969) for the whole process, we must find a means 
of bringing the computed cosine invariants directly 
into the phase refinement by the tangent formula. How- 
ever the improvement resulting from the combination 
of these two techniques only becomes interesting if it 
does not involve too large an increase in computing 
time. This is why we sought, first, the most suitable 
way of computing cosine invariants on relatively small 
computers. 

Fast computation of cosine invariants by the triple 
product formula (Hauptman et al., 1969) 

The computation of the triple product formula: 

IE, tE, zE, al cos (~m + ~°-2 + ~Ha) 

= ( t r e  K + HIEK- H3)K + R3 
where Ht + H2 + H3=O, 

R 3 depends only on IEml, IE, zl, IEHal 

and K is an empirical scale factor, requires a search of 
a great number of sets of three reflexions K, K+ 1tl, 
K - H a .  It is obvious that such a search by computing 
and comparing the three indices h, k, /, for each re- 
flexion is time-consuming. It is better to associate each 
reflexion with a position in the central store of the 
computer, as used in a search for the Y.2 relations of 
Karle and Hauptman (see, for example, Beurskens, 
1963). 

In our case, each reflexion H(h,k,l) is associated 
with the address: 

A,=h+k(2hMax+ 1) + l(2kmx+ 1) (2h~ax + 1) 

for the core position containing the e,  value which 
then can be called directly during the computation. 

When we search the Ya relations for an H reflexion 
(that is to say the pairs of reflexions K and K -  H), we 
may reduce the computing time by half by using the 
symmetry of this operation with respect to the 11/2 
point.* 

* In fact, the notat ion HI2 corresponds to only half the 
reciprocal-space vector when the three indices of H are even. 
However when this is not the case, we may nevertheless define a 
reflexion H" which will play in the core the same role as HI2 in 
the computat ion above. If I is odd, H '  is - h . . . .  - k . . . .  (l + 1)/2 
because, to all the reflexions of the ( l+  1)/2 plane, the vectorial 
operation ( - H )  makes a reflexion of the plane - ( l - 1 ) / 2  
correspond. We obtain the same pairs of reflexions as with the 
planes ( l - 1 ) / 2  and - ( l + 1 ) / 2  after using Friedel's law. The 
same considerations show that:  if l is even and k odd, H '  is 
- h  . . . .  (k+ 1)/2,(l)/2 and if l and k are even and h odd, H '  is 
(h + 1)/2, (k)/2, (0/2. 
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Indeed, the symmetric of K with respect to HI2 is: 

H / 2 - ( K -  H/2)= H - K  

and the pairs K, K - H  and H - K ,  - K  built on these 
two symmetrical points are identical from Friedel's 
law. Then we have: 

EKEd_H=2 ~ ErEr-H. 
K K > H / 2  

aH space 

In the same way, we may decrease the number of 
operations needed in the triple product evaluation by 
using the symmetry of this formula with respect to the 
point 113/2. The triple product built from the point 
H3-K, symmetric in K with respect to Ha~2 may be 
written: 

F'H3 -- K~'H1 + H3  - KF'K 

or by using Friedel's law and the equality//1 + / /2  +/-/3 
= 0  

F~KF'K + H 2 ~ K  - H3  • 

Finally, the triple product formula may be computed 
for half  of reciprocal space: 

(~x~- ,~3~ + , , i )~  = ( ~ , : -  ,,3(eK + ,,1 + ~K +,,2) ) , ,> H3/2 
which decreases the computing time by about one 
third. During the computation we obtain directly the 
operations on the values whose core addresses are 
At, AK-ua, At+Hi, AK+H2.  

A program written with this scheme for a 360-44 
IBM (128 Kbytes) computer allows the determination 

of 2000 cosine invariants with 2500 to 3000 K contribu- 
tors in each in about half an hour. 

Before we describe how to incorporate the results of 
the cosine invariants computation in the normal direct 
method calculations, we shall compare, for known 
structures, the computed cosine invariants with their 
real values, to justify our approach. 

Experimental study 

We have tested three different structures solved by 
normal direct methods, oestrone I (P21212x, Z=4) and 
oestrone III (P2t, Z=4) (Busetta, Courseille & Hos- 
pital, 1973) and hydrated androstanolone (P2x, Z=2) 
(Busetta, Courseille, Fornies-Marquina & Hospital, 
1972). The results presented here relate to the first 
structure, but similar results were obtained for the 
other two. 

The different cosine invariants were computed from 
the triple products, after determination of a semi- 
empirical scale factor as proposed by Hauptman et al. 
(1969). 

Our main purpose was to discover what improve- 
ment was brought to the knowledge of cosine in- 
variants by the computation of the triple product, 
compared with the value + 1.0 with which they are 
identified in the use of the tangent formula. By com- 
paring cosine invariants computed by the triple product 
formula with their real values determined when the 
structure was solved, we see that: 

(a) The cosine invariants computed near + or - 1-0 
fit quite well with their real values. 

Table 1. Mean deviation of cosine invariants with whole set of normalized observed structure factors 

I n v a r i a n t s  
< 60 ° 

0comp > 120 ° 60 ° <: 0eomp < 120 ° 

( A )  S t a n d a r d  dev ia t i ons  S t a n d a r d  dev ia t i ons  

Quantity Triple Tangent Quantity Triple Tangent 
product product 

1"428 < A < 1.529 59 0.56 0"34 32 0.75 0.49 
1-530 < A < 1.641 60 0.26 0.34 27 0.77 0.44 
1.642 < A < 1.799 59 0"32 0.30 32 0.87 0.48 
1.800 < A < 1.992 61 0.24 0.33 32 0.81 0.48 
1.999 < A < 2.487 95 0-25 0.32 33 0.74 0.43 
2-490< A < 4.298 40 0.19 0.21 14 0.67 0.25 

Table 2. Mean deviation of cosine invariants with structure factors corresponding to sin 0 < 0-7 

Invariants 
< 60 ° 

0comp > 120 ° 60 ° < 0comp < 120 ° 
(A) Standard deviations Standard deviations 

Quantity Triple Tangent Quantity Triple Tangent 
product product 

1.428 < A < 1,529 63 0"51 0.42 28 0.76 0.48 
1-530 < A < 1,641 60 0.34 0.34 27 0.70 0.30 
1"642<A < 1,799 58 0.39 0.35 33 0.80 0.30 
1-800 < A < 1,992 59 0.26 0"40 34 0.80 0.40 
1.999 < A < 2,487 94 0"30 0"30 34 0.60 0.53 
2"4.99 < A < 4:298 4.3 0.28 Q.~ lO Q'7Q Q'20 
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(b) On the contrary cosine invariants computed near 
0 are generally quite wrong. 

In Tables 1 and 2 we present the mean deviation of 
the real cosine invariants from the computed values 
and from the + 1.0 determination used with the tangent 
formula. We consider two classes: 

(a) The set of cosine invariants corresponding to 
phases less than 60 ° or greater than 120 ° . 

(b) Those corresponding to a phase between 60 ° and 
120 ° . 

The comparison first uses the whole set of norm- 
alized observed structure factors (Table 1) and then 
only the structure factors corresponding to sin 0 < 0.7 
(Table 2). The comparison clearly shows the de- 
pendence of the computation of the cosine invariants 
by the triple-product formula on the decrease in resolu- 
tion. 

Table 1 also shows that, for the first class of in- 
variants, the use of the triple-product formula brings 
about a real improvement compared with the tangent 
formula. 

On the other hand, for the second class, the com- 
puted cosines appear quite wrong and it seems better 
to use the tangent formula. However we note, for this 
second class, that the real cosine invariants deviate 
much more from the implicit value + 1.0 than do those 
of the first class. The use of the triple-product formula 
is thus distinguishing between the different structure 
invariants used in the phase determination. 

Finally, if the computation of cosine invariants by 
the triple-product formula does not seem sufficiently 
reliable to justify such a time-consuming technique as 
the least-squares refinement proposed by Hauptman 
et al. (1969), nevertheless the possibility of using those 
results during the whole generation in a fast technique 
like symbolic addition or multisolution would be 
interesting. The weighting scheme we now propose 
permits this. 

Proposed weighting scheme 

The structure invariants H~+H2+H3 are ordered in 
groups of 100 elements in decreasing values of An1. n2. 
Within each group, we may consider to a first approx- 
imation the AH1. n2 values as constant and equal to .4. 
Then in each group, the structure invariants are 
ordered~ according to increasing triple product, f is the 
rank of' a given invariant obtained. 

If the cosine invariants follow the theoretical dis- 
tribution defined by Cochran (1955), the probability 
that a cosine invariant is less than x, is: 

1 (~ .exp_ (At) dt .  
F ( x ) -  nlo(a) ,}-1 } / i - t  

For any group of N =  100 elements, the theoretical 
cumulative frequency corresponding to the value x is 
f =  NF(x). Reciprocally, the invariant of rank f should 
correspond to a cosine equal t o  xl =F-~(f/N).  The 
variation of xl as a function o f f  for A =2"0 is shown 
in Fig. 1, 

If, on the contrary, the triple-product values bore 
no relation to the corresponding cosine invariants the 
most probable value for each of them would remain 
the mean value defined by Germain, Main & Woolf- 
son (1970): 

I~(A) 
-G(A)  . x2 -  Io(A) 

In fact, if, as is shown by the experimental study, the 
partition achieved by the triple-product computation is 
not perfect, we may still expect a certain selection 
among the cosine invariants in which case they are no 
longer randomly distributed. For an invariant of rank 
f, the most probable cosine value may be expressed as: 

x = ~'xl + (1 - ?)x2, 

where ~, lies between 0 and 1 and represents the con- 
fidence we have in the ability of the triple product 
computation to sort the cosine invariants. We think 
that y=0-5 is a realistic estimate of the capability of 
such a computation. 

The weight Aul.nz normally used in the tangent 
formula corresponds to a value x2 taken as the most 
probable cosine invariant. If we obtain, with the triple- 
product formula, x instead of x2 as the most probable 
value, it seems logical to associate it reciprocally with a 
weight A~I ' H2 defined by" 

A'nl,n2=G-a(x). 

The cosine invariants for which Xl is close to 1 and 
thus x < x2 will have a new weight A~I ' H2 greater than 
the initial An1, n2 value. On the other hand, if xx is close 
to - 1 ,  the weight A'n~,n2 will be lower than Ana.n 2. 

The proposed weighting scheme permits use of all 
the information provided by the cosine-invariant 
computation directly in the tangent-formula refine- 
ment, as well as in the symbolic-addition procedure. 
Furthermore it eliminates the sign indetermination 
which follows the cosine invariant inversion which is 
the principal difficulty of the process described by 
Hauptman et al. (1969). 

As the immediate consequence of this weighting 
scheme is to weaken the disastrous influence of the 
negative cosine invariants during the phase determina- 
tion, we may expect an improvement of the generation 
process and a greater chance of success. Moreover our 
weighting scheme should influence the choice of the 
origin reflexions obtained by the convergence method 
(Germain et al., 1970) thus giving a better starting set. 

The use of this new weighting scheme also gives an 
improvement in the final phases obtained by refine- 
ment with the tangent formula. For example, with 
androstanolone, starting with the 'fixing origin and 
symbol' reflexions corresponding to the correct solu- 
tion and refining them by the tangent formula with the 
normal weighting scheme and with our new one, the 
mean deviation between the computed and the real 
phases is ( A ~ } =  19.7 ° and 15"9 ° respectively. 
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Application to the determination of some crystal 
structures 

The determination process described above was de- 
veloped in the set of programs 'Methodes directes' used 
at Bordeaux (MEDIBOR).  Parts of it are written in 
assembler language, mainly the search of the ~[2 rela- 
tions and the computation of the triple products (we 
have two versions: one for an IBM 360-44 and one for 
a CII IRIS 80 computer). This program has been used 
successfully in the determination of four crystal 
structures: 

(1) For stilbamidine diisethionate 
(½C16NaH16. SOzCH2CH2OH. H20, PT, Z =  2) (Cour- 
seille, Busetta, Comberton & Hospital, 1971), the 
Fourier synthesis obtained with signs determined by 
MEDIBOR showed not only the atoms of the two 
molecular groups but also the unexpected water mole- 
cule. 

(2) For androstenedione (C1902H20 , P212121, Z = 4 )  
(Busetta, Comberton, Courseille & Hospital, 1972) we 
obtained a very good determination as is shown by 
the small mean deviation of the computed from the 
real phases ((A~0) = 11.8 °) as well as by the absence of 
spurious peaks at the centre of the hydrocarbon rings 
which we have observed for other steroids determined 
by the multisolution ( M U L T A N )  method. 

These two structures would undoubtedly have been 
solved by the multisolution method, although the phase 
determination would have been less accurate. How- 
~ver, for the following two structures no satisfactory 
solution was obtained by the M U L T A N  program. 

(3) For a dimer related to diquinacrine 
(C3702NaC12H. 2CHC13, PT, Z =  2) (Courseille, Busetta 
& Hospital, to be published) none of the 128 solutions 
seems better than the others as far as the usual figures 
of merit are concerned, and the five or six solutions we 
used for a Fourier synthesis did not yield a suitable 
trial structure. On the other hand one of the 64 solu- 
tions obtained with MEDIBOR gave very good values 
for the figures of merit ~c~ and ~0. The Fourier map 
computed with this solution showed 36 of the 44 atoms 
of the dimer molecule. 

(4) For ethylenediamine (ED) ditartrate 
(C406H6.½C2N2H6, P41212, Z = 8 )  (Perez, 1973), the 
presence of two molecular islands (Busetta, 1973) and 
also the particular location of the ED ion with respect 
to the 41 axis made phase generation much more dif- 
ficult. None of the solutions provided by M U L T A N  

gave an A B S F O M  figure of merit greater than 0-80, 
which suggests a wrong determination. Of the different 
solutions provided by a cosine-invariant computation, 
only one appeared self-consistent (ABSFOM=0.975) .  
It permitted location of the tartrate ion. In order to 
find the half ED ion, a new generation of phases was 
initiated with the phases given by the tartrate ion and 
with a convenient variable symbolic phase for defining 
the ED island. This process, which illustrates an 
application of the method described elsewhere (Busetta 
1973) for determining structures with molecular 
islands, provided, by tangent-formula refinement, a set 
of phases for which the mean deviation to the real final 
phases reached the very low value ( A ~ ) = 6  ° for re- 
flexions with E >  1.40. 

These results are sufficient to encourage us to 
attempt the determination of crystal structures con- 
taining molecules with as many as 100 atoms. 

The authors are indebted to Dr M. Hospital for 
stimulating discussions and for his critical reading of 
the manuscript. 
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